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LEVER TO THE EDITOR 

Non-equilibrium critical behaviour on fractal lattices 
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New York, ~ r o n x ,  N Y  10468, USA 
Department of Physics and Astronomy, Herben H Lehman College, City University of 

Received 26 April 1991 

Abstract. A simple one-component surface reaction model exhibiting a critical point has 
been studied on deterministic fractal lattices with fractal dimension 1 i D , < 2 .  Results 
from time-dependent simulations show a change in the value of the critical exponents with 
D,. Two of the exponents interpolate very nicely between the values in one and two 
dimensions. 

Non-equilibrium phase transitions have been studied intensively in recent years. Special 
attention has been devoted to the question of universality classes. A large variety of 
non-equilibrium models such as the contact process [ I ,  21, Schlogl's first model 13-51, 
directed percolation [6-81, Reggeon field theory [9,4] and the ZGB model [lo, 111, all 
of which exhibit a continuous transition from an active state tn an absorbing state, 
have the same critical behaviour. Studies of related models via computer simulations 
[12-151, field theoretic arguments 116,171 and series expansions [le] demonstrate the 
robustness of this universality class against a wide range of changes in the local kinetic 
rules such as multi-particle processes, diffusion and changes in the number of chemical 
components. So currently there is substantial evidence in favour of the conjecture 
[5, 16,171 that models with a scalar order parameter exhibiting a continuous transition 
to an absorbing state generically belong to the universality class of directed percnla- 
tionjReggeon field theory. So far it seems that the criticai exponents depend solely on 
the dimensionality. Studies of fractal spin systems, e.g. Ising-spins placed on fractal 
lattices [19], have shown that the critical exponents depend not only on the fractal 
dimensionality but also on several topological factors: connectivity, ramification, 
lacunarity etc [19]. Motivated by this I have studied this type of non-equilibrium 
critical behaviour on fractal lattices. 

In this letter I study a simple one-component non-equilibrium lattice model with 
spontaneous annihilation and autocatalytic creation of particles. Each site can be either 
vacant or occupied by a single particle. The state of the lattice is thus given by a set 
of occupation variables {uj}, where ui=O ( I )  when site i is vacant (occupied). The 
system evolves in time through a sequence of changes each involving a single elementary 
process. The annihilation process, which takes place with probability p, simply turns 
an occupied site into a vacant site. With probabiiity i - p  an occupied site creates a 
new particle autocatalytically at a randomly chosen vacant nearest neighbour. As there 
is no spontaneous creation of particles the state with all sites vacant (the vacuum state) 
is an absorbing state, i.e. a state that the system cannot possibly leave. 

t Permanent address: Institute of Physics, University of Aarhus, DKOCQO Aarhus C. Denmark. 
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The processes always involve an occupied site, so by maintaining a list of these 
sites the updating in a sequential Monte Carlo simulation can be made very efficient. 
After each attempted process time is incremented by I/NoCc where No,, is the number 
of occupied sites. In the long time limit the system reaches a steady state characterized 
by the average concentration of occupied sites p, which is the appropriate order 
parameter. When the annihilation probability p exceeds a critical value pc  all particles 
will eventually disappear from the lattice and the system enters the absorbing state. 
Below pc an active state with a non-zero average concentration of particles is reached 
(in the infinite size limit). The order parameter p changes continuously at p c .  The 
non-equilibrium phase transition at pc  is thus a continuous transition from an active 
state to an absorbing state. 

I have studied the model on two determinstic fractal lattices namely the Sierpinski 
carpet and the Tamis Vicsek fractal. The Sierpinski carpet is generated by removing, 
in each step, the middle 1/9 of all squares and it thus has the fractal dimension [20] 
D, = In 8/ln 3 = 1.8927 . . . . The Tam& Vicsek fractal is generated by removing, in each 
step, the four squares in the middle of each side leading to a fractal with dimension 
[20] D,= In S/ln 3 = 1.4649.. . . The two fractals are shown schematically in figure I .  
The Sierpinski carpet is connected along the usual nearest neighbours whereas the 
Tamis Vicsek fractal is connected along the diagonals or next-nearest neighbours of 
an ordinary two-dimensional square lattice. In  the simulations I used a Sierpinski 
carpet with six levels giving a linear size L = 3b = 729 and a number of sites belonging 
to the fractal N = S6= 262 144. Before making any simulations the Sierpinski carpet, 
shown in figure 1, was translated so that the uppermost left corner was placed at the 
centre (the reason for this should become clear, I hope, in a short while). The Tamis 
Vicsek fractal had seven levels and thus a linear size L =  3'=2187 and the number of 
sites in the fractal was N = 5 '=  78 125. 

(c) @) 

Figure 1. The Sierpinski carpet ( a )  and the Tamis Vicsek fractal ( b ) .  Both fractals are 
shown with three levels (sizes of holes). On the Sierpinski carpet each black square with 
the size of the smallest holes represent a single site. Each site on the Tamis Vicrek fractal 
is represented by a black dot. 

in order io &iermine some ofihe ; use: ~iiie-,-Jepeii&nt jimiiia- 
tions, which have proved to be a very efficient method for determining critical points 
and exponents [4,8,  11, 131. The general idea is to start from the configuration closest 
to the absorbing state, in this case a configuration with a single seed particle, and then 
follow the 'average' time evolution of the configuration. From this initial configuration 
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I made a number of independent runs, typically 1-2 x IO', for different values of p in 
the vicinity of p c .  Each run had a maximal duration of 5000 timesteps. As fractals are 
not homogeneous objects the results might depend on the environment of the seed 
particle. Starting out on the edge of a large hole is surely different from starting in an 
area with a high density of sites. In order to reduce this effect I made an average over 
different initial positions of the seed particle. I did this by choosing in each run a 
random position for the seed particle in the middle 119 of the fractal. I measure the 
survival probability P ( f )  (the probability that the system had not entered the absorbing 
state at time f ) ,  the average number of occupied sites n( 1 )  and the average mean square 
distance of spreading R 2 ( f )  from the position of the seed. It should be noticed that 
n ( t )  is averaged over all runs whereas R 2 ( t )  is averaged only over the surviving runs. 
From the scaling ansatz for the contact process and similar models [4,8] it follows 
that the quantities defined above are, in ordinary (non-fractal) D-dimensional spaces, 
governed by power laws at pc  at f +OO 

P( t )  a t-* 

n ( i ) a i l  

R 2 ( t ) a  ti. 

The three exponents S, 7, and z are related through the scaling relation 

Dz = 48 +27. (4) 
As will become clear, the same relations are true for fractal lattices. 

In log-log plots of P ( i ) ,  n ( t )  and R 2 ( t )  versus f we should see asymptotically a 
straight line at p = p c .  The curves will show positive (negative) curvature when p < p c  
( p  > p J .  This makes it possible to obtain precise estimates for pc. The asymptotic slope 
of the (critical) curves define the dynamic critical exponents 8, 7 and z. Generally we 
have to expect corrections to the pure power law behaviour so that P ( t )  is more 
accurately given by the formula [8] 

P(r)a f-'(  1 +at- '+  bt-"+. . .) ( 5 )  
and similarly for n ( t )  and R z ( f ) .  More precise estimates for the critical exponents can 
be obtained if one looks at local slopes, defined as 

and similarly for q ( f )  and z ( t ) .  The local slope 8(t)  behaves as [8] 

8 ( t )  = S + a f - ' +  bS'f-b'+. . . (7) 
and similar expressions for ~ ( t )  and z ( f ) .  Thus in a plot of the local slopes versus l / t  
the critical exponents are given by the intercept with the y-axis. 

The results for P ( t ) ,  n ( t ) ,  and R 2 ( t )  on the Sierpinski carpet are shown in figure 
2 ( a )  and the corresponding local slopes - 8 ( f ) ,  ~ ( t )  and z ( t )  are shown in figure 2(b). 
The curves for n( f )  and T (  t )  clearly deomonstrate that both p = 0.4572 and p = 0.4570 
are off-critical leading to a very precise estimate of the critical point p c =  
0.457 10~0.00005. the similar results for the Tamis Vicsek fractal are shown in figures 
3(a)  and 3(b). In this case the distinction between the different values of p is not so 
clear-cut. The results for T ( f )  does, however, strongly indicate that the critical point 
is p,=0.3463+0.0001. The estimtes for the critical exponents S. 7 and z are stated in 
table 1, which also shows the values obtained on ordinary one- and two-dimensional 
lattices [4,81. 
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Figure 2. ( a )  Log-log plot of the survival probability (upper panel), the average number 
of occupied sites (middle panel). and the average mean square distance of spreading (lower 
panel) for the Sicpinski carpet. Each panel contains three C Y N ~ S  with, from bottom to top, 
p=0.4572.0.4571, and 0.4570. ( b ) .  Local slopes -S(r) (upper panel), V ( I )  (middle panel), 
and I(:) (lower panel), as defined in (6) with m = 5 ,  for the curves in figure Z(0 ) .  
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Figure 3. ((1) Log-log plot ofthe survival probability (upper panel), the average number 
of occupied sites (middle panel). and the average mean square distance of spreading (lower 
panel) for the Tam& Vicsek fractal. Each panel contain three C U ~ Y ~ S  with, from bottom 
to fop, p=O.3464. 0.3463, and 0.3462. ( 6 )  Local slopes - N I )  (upper panel). ? ( I )  (middle 
panel), Z ( I )  (lower panel), As defined in ( 6 )  with m = 5 ,  for the curves in figure 3(a) .  
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Table I.  Critical exponents 8, 7, and i on, from top to bottom, one-dimensional lattices 
[4]. the Tamis Viesek fractal. the Sierpinski carpet, and two-dimensional lattices [a]. 

D, 6 7 

I 0.162+ 0.004 0.308+0.009 1.26310.008 
In5/ ln3 0.26510.005 0.285 * 0.010 1.10010.010 
1na!in3 O . ~ O O + O . O I O  0.235 * 0.010 I,nm-tn.n15 
2 0.460r 0.006 0.214 * O.OO8 1.134*0.004 

The values of S and 7 obtained on the Tamis Vicsek fractal and the Sierpinski 
carpet interpolate very nicely between the values on one- and two-dimensional lattices. 
There is, however, a significant deviation from this picture when we look at the critical 
exponent z for the average mean square distance of spreading. This deviation might 
be due to the way I measured the distance from the initial seed, as I simply used the 
Euclidean distance. It is questionable whether this is a correct procedure for measuring 
the distance between points on a fractal. Two points on a fractal which are close in 
Euclidean space might very well be far apart in the sense that the minimal length taken 
over all the paths connecting the points can be much larger than their Euclidean 
distance. in fact one probably ought to use this measure of distance instead of the 
Euclidean distance. 

The results for z could, however, be a major sign that new effects come into play 
when considering fractal lattices. From renormalization group calculations the E- 

expansion [21,22] yields exponents which depends monotonically on E = 4- D, when 
no account is taken of the special geometry of a fractalt. As shown by Gefen et al 
[ 191, a variety of geometrical factors have a profound influence on the critical exponents 
of fractal spin systems. A similar influence should probably be expected for the kind 
of non-equilibrium phase transitions studied in this letter. Significant evidence in favour 
of this interpretation of the simulation results can be found in the fact that the scaling 
relation (4) still seems to hold true. Inserting the values for the critical exponents and 
D, one finds for the Tamis Vicsek fractal: 4S+27=1.630+0.040 and D,z= 
1.611+0.0015, and for the Sierpinski carpet: 4S+2q=2.070*0.060 and D,z= 
2.006+0.028. Although the agreement is somewhat marginal for the Sierpinski carpet 
there is strong evidence that the scaling relation (4) still hold true in these cases. This 
in turn indicates that the special behaviour of z is generic to the two systems studied 
and not an artefact of the way distances are measured. 

1 would like to thank H C Fogedby and R Dickman for their encouragement, support, 
and continued interest in and comments on my work. Many thanks to 0 G Mouritzen 
and J V Andersen for letting me spend the excessive amounts of computer time without 
which this project would have been impossible. 
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